Towards Explainability in Monocular Depth Estimation

Vasileios Arampatzakis^{1,2}, George Pavlidis², Kyriakos Pantoglou², Nikolaos Mitianoudis¹, and Nikos Papamarkos¹

> ¹Democritus University of Thrace, Xanthi, Greece ²Athena Research Center, Xanthi, Greece

Monocular Depth Estimation

- Inferring depth information from 2D images
- Crusial for: Robotics, Autonomous driving, Augmented reality
- An inherently ill-posed problem
- Ambiguities caused by the projection of the 3D world to 2D images
- Significance: Enhances scene understanding and 3D perception
- Deep Learning-based methods outperform traditional approaches
- CNNs, Vision Transformers capture complex patterns in images

Typical Explainability Methods

- Unveiling the rationale behind model predictions
- Crusial for: Transparency & trust, Model improvement, Bias detection, User understanding, Regulatory compliance
- Methods: Feature visualization, Saliency maps, Attention mechanisms, LIME (Local Interpretable Model-agnostic Explanations), SHAP (Shapley Additive exPlanations), Grad-CAM (Gradient-weighted Class Activation Mapping)
- Trade-offs between simplicity and accuracy in explanation methods
- Some methods are model-specific, while others are model-agnostic
- The need to validate explanations and ensure they reflect true model behavior

Unique Approach: Connecting with Human Perception

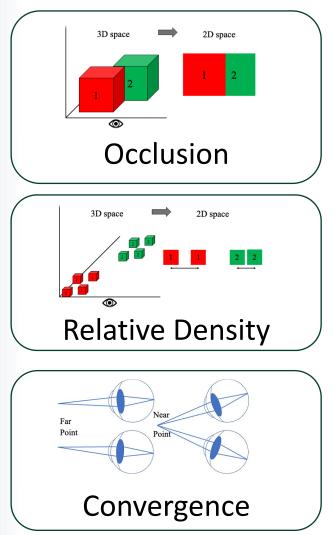
- Objective: Enhance explainability by aligning model predictions with how humans perceive depth
- **Key idea**: As a dataset is limited to provide only a single cue, the accuracy of the methods indirectly reflects their success in learning the selected depth cue.

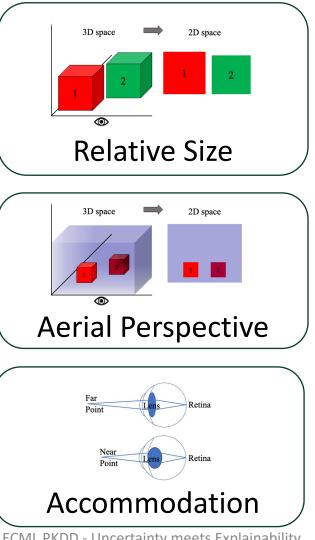
Input: RGB image (multiple visual depth cues)

Output: depth map

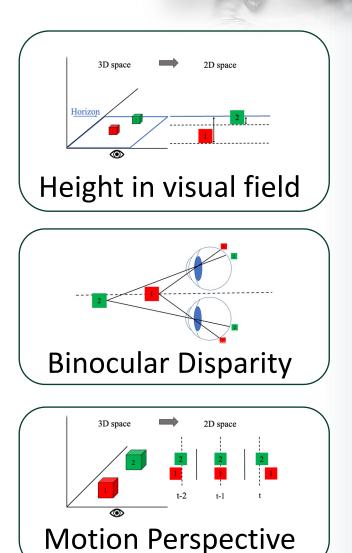
Cutting & Vishton (1995): Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth

Visual Depth Cues





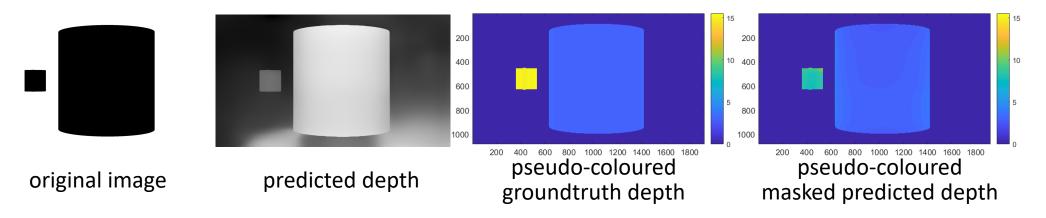
ECML PKDD - Uncertainty meets Explainability, 18 - 22 September 2023, Turin



Nagata (1987): How to reinforce perception of depth in single two-dimensional pictures

Visual Depth Cue (VDC) Dataset

- A synthetic resource for monocular depth estimation inspired by human perception (Cutting & Vishton, Nagata)
- Exclusive depth cue representation in each image
- Relative Size (\approx 23800 images):
 - 2D images of black cylindrical objects at various distances against a white background, created through perspective projections of the corresponding virtual 3D scenes



Metrics

 d_i : groundtruth depth value \widehat{d}_i : predicted depth value N: number of samples

• Absolute Relative Error:

• Squared Relative Error:

$$AbsRel = \frac{1}{N} \sum_{i=1}^{N} \frac{\left|d_i - \hat{d}_i\right|}{d_i}$$

$$SqRel = \frac{1}{N} \sum_{i=1}^{N} \frac{\left(d_i - \hat{d}_i\right)^2}{d_i}$$

• Linear Root Mean Squared Error:

$$RMSE(lin) = \sqrt{\frac{1}{N}\sum_{i=1}^{N} (d_i - \hat{d}_i)^2}$$

Metrics

 d_i : groundtruth depth value \widehat{d}_i : predicted depth value N: number of samples

• Logarithmic Root Mean Squared Error:

$$RMSE(log) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\log d_i - \log \widehat{d}_i\right)^2}$$

• Scale-invariant Mean Squared Error [*Eigen*]:

$$sRMSE(log) = \frac{1}{N} \sqrt{\sum_{i=1}^{N} \left(\log d_i - \log \widehat{d}_i + a(d_i, \widehat{d}_i) \right)^2},$$

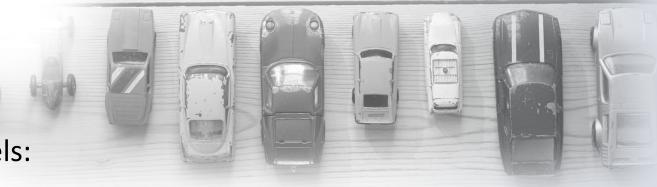
where $a(d_i, \widehat{d}_i) = \frac{1}{N} \sum_i (\log \widehat{d}_i - \log d_i)$

• Accuracy with threshold (δ_{χ}) :

(%) of
$$d_i$$
 such that $\max\left(\frac{d_i}{\widehat{d_i}}, \frac{\widehat{d_i}}{d_i}\right) = \delta < thr,$
where $thr = 1.25, 1.25^2, 1.25^3$

18 - 22 September 2023, Turin

Models



- 12 Pretrained state-of-the-art models:
 - *MiDaS* (4 variations)
 - *Monodepth2* (6 variations)
 - DenseDepth (2 variations)

Table: Evaluation on KITTI dataset, using the Eigen split

Model	Year	Citations	Version	AbsRel	SqRel RMSE		RMSE log	δ1	δ2	δ_3	
MiDaS	2020	721	dpt_hybrid	0.062	0.222	2.575	0.092	0.959	0.995	0.999	
Monodepth2	2019	1708	mono_640x192	0.115	0.903	4.863	0.193	0.877	0.959	0.981	
DenseDepth	2018	435	kitti	0.093	0.589	4.170	0.171	0.886	0.965	0.986	
Eigen	2014	3782	(baseline)	0.190	1.511	7.156	0.270	0.692	0.899	0.967	

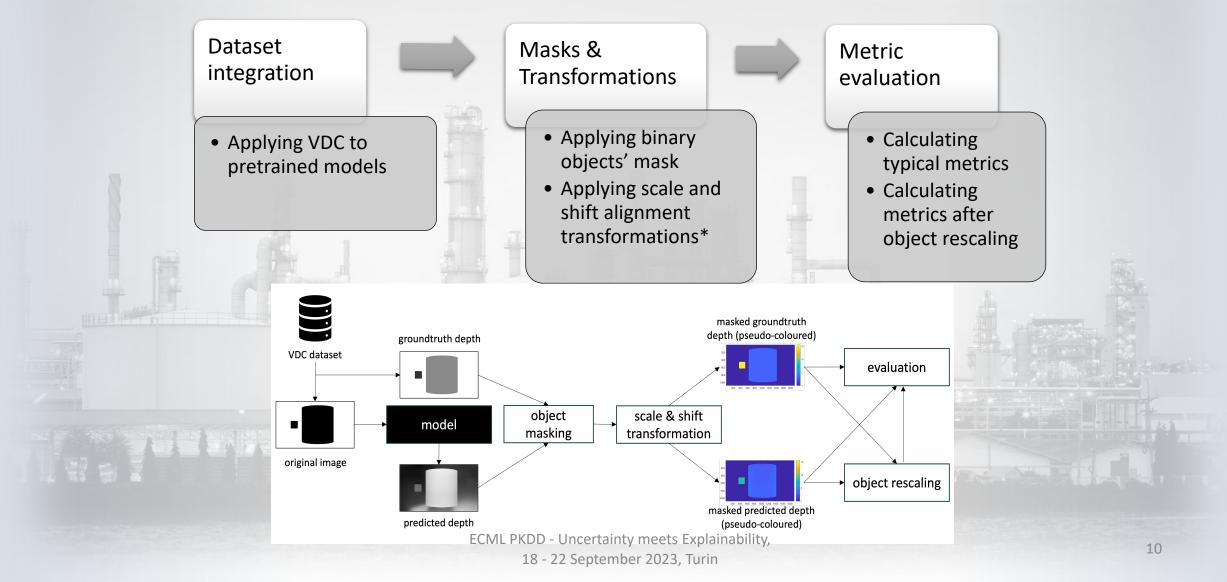
ECML PKDD - Uncertainty meets Explainability,

18 - 22 September 2023, Turin

*Ranftl et al. (2020): Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset

transfer

Experiment Pipeline Overview



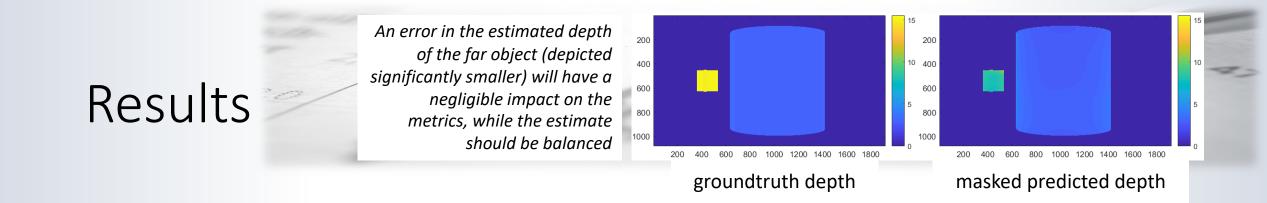


Table: Evaluation on VDC dataset, mean values

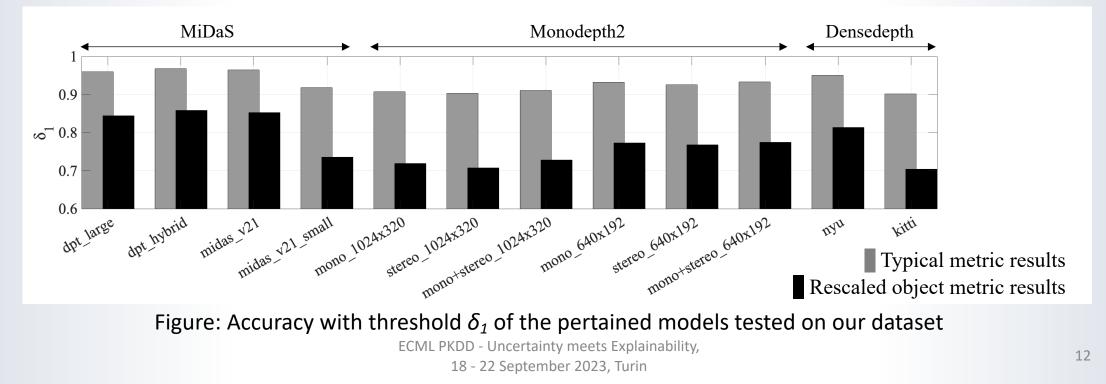
		Typical metric results								Rescaled object metric results								
Model	Version	AbsRel	SqRel	RMSE	RMSE _{log}	sRMSE	δ1	δ2	δ_{3}	AbsRel	SqRel	RMSE	RMSE _{log}	sRMSE	δ_1	δ_2	δ_{3}	
MiDaS	midas_v21	0.056	1.718	10.097	0.040	0.003	0.964	0.987	0.993	0.111	7.562	21.852	0.088	0.014	0.853	0.908	0.935	
Monodepth2	stereo1024x320	0.104	57.259	21.226	0.078	0.008	0.903	0.957	0.978	0.202	228.261	42.372	0.165	0.031	0.708	0.799	0.856	
DenseDepth	kitti	0.103	3.472	20.153	0.083	0.009	0.902	0.951	0.972	0.207	16.657	40.576	0.178	0.036	0.704	0.785	0.837	

ECML PKDD - Uncertainty meets Explainability,

18 - 22 September 2023, Turin

Results

- *MiDaS* demostrate superior performance (rescaled $\delta_1 \approx 0.85$): Potential for partial learning of the relative size cue
- Densedepth (nyu) also exhibit enhanced accuracy: Pivotal role of training datasets: Densedepth (kitti) displays weaker results



Conclusion

- Preliminary study: New explainability concept for monocular depth estimation
- Creating a novel dataset: Introducing the Visual Depth Cue Dataset (VDC)
- Testing pretrained methods on a single visual depth cue: Exploring relative size
- Assessing indirect success: Metrics unveil monocular depth estimation performance
- Balancing metrics: The role of rescaled object assessments
- Future directions:
 - Expanding VDC: Incorporating other visual depth cues \rightarrow benchmark dataset
 - Evaluating state-of-the-art method efficiency
 - Bridging Deep Learning with Human Perception
 - New depth estimation models aligned with human perception

