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What are we talking about?
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• Decision trees
• Classification

• Explainability applications
• Univariate decisions
• Shallow



Decision Trees

• Global optimality NP-hard
• Heuristic algorithms 

• Good empirically 
• Greedy top-down

• Information gain 
• Gini impurity 

+ Pruning 



The problem

• CART creates a leaf with low accuracy
 → Misleading (~unfair) explanation
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Proposed solution

• Maximize leaf 
accuracy

• Minimal accuracy 
across leaves
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Training Process

• Create a Tree
• MIP formulation

• Reduce
• Remove redundant leaves

• Extend leaves
• Any ML model
• Improve the total model accuracy
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MIP formulation

• Based on Optimal Classification Tree (OCT) 
formulation [Bertsimas and Dunn, 2017]

• Change the objective to Leaf Accuracy
• Details in the paper



Results
• Categorical and 

Numerical tabular data 
[Grinsztajn et al., 2022]

• At least 50 samples in 
each leaf

• Tree depth = 4

• 10 random runs
• MIP time limited to 8 

hours
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On categorical datasets (7)
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On numerical datasets (16)
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Summary

• Top-down algorithms for trees can make 
unbalanced leaves (in terms of accuracy)

• Maximizing leaf accuracy improves this
• Trade-off between leaf and model accuracy
• When extended, the model has comparable 

performance + added explainability

• MIP limitations (dataset, tree depth)
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Tabulated results
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