Regionally Additive Models: Explainable-by-design models minimizing feature interactions

Vasilis Gkolemis^{1,2} Anargiros Tzerefos¹ Theodore Dalamagas¹ Eirini Ntoutsi³ Christos Diou²

¹ATHENA Research and Innovation Center

²Harokopio University of Athens

³Universitat der Bundeswehr Munchen

September 2023, Turin, Italy

Wikipedia says:

In statistics, a generalized additive model (GAM) is a generalized linear model in which the response variable depends linearly on unknown smooth functions of some predictor variables.

Wikipedia says:

In statistics, a generalized additive model (GAM) is a generalized linear model in which the response variable depends linearly on unknown smooth functions of some predictor variables.

2 / 18

Wikipedia says:

In statistics, a generalized additive model (GAM) is a generalized linear model in which the response variable depends linearly on unknown smooth functions of some predictor variables.

$$y = \cdot + \ldots + \cdot$$

Wikipedia says:

In statistics, a generalized additive model (GAM) is a generalized linear model in which the response variable depends linearly on unknown smooth functions of some predictor variables.

$$\mathbf{y} = f_1(\mathbf{x}_1) + \ldots + f_D(\mathbf{x}_D)$$

Introductory Example

Output/target variable:

• $y_{\text{bike-rentals}}$: the expected number of bike rentals per hour

Input/covariates:

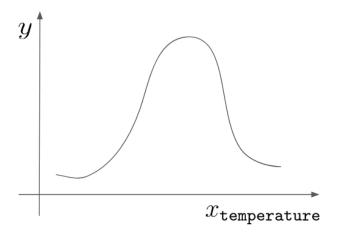
- $x_{\text{temperature}}$: temperature per hour
- x_{humidity}: humidity per hour
- x_{is_weekday}: if it is weekday or weekend

Let's fit a GAM:

$$y = f_1(x_{\text{temperature}}) + f_2(x_{\text{humidity}}) + f_3(x_{\text{is_weekday}})$$

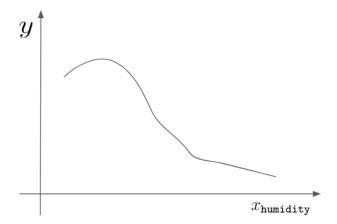
GAMs - Interpretability (1)

 $f_1(x_{\text{temperature}})$



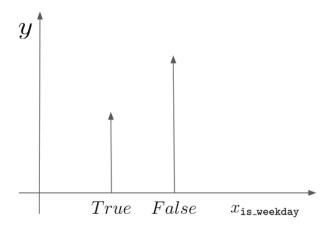
GAMs - Interpretability (2)

 $f(x_{\text{humidity}})$



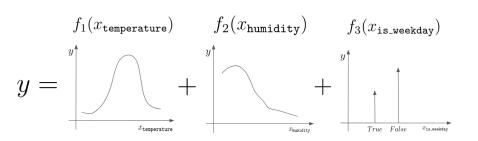
GAMs - Interpretability (3)

 $f(x_{is_weekday})$



GAMs - Interpretability (4)

GAMs is explainable!



Limitations:

Limitations:

• temperature has different effect on week-days vs weekends

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term $f(x_{temperature}, x_{is_weekday})$

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term f(x_{temperature}, x_{is_weekday})
- Solution 2: Model two conditional terms
 - $f(x_{temperature}|weekday)$
 - ▶ f(x_{temperature}|weekend)

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term f(x_{temperature}, x_{is_weekday})
- Solution 2: Model two conditional terms
 - $f(x_{temperature}|weekday)$
 - $f(x_{temperature}|weekend)$

Extensions:

• Solution 1: $GA^2M = GAM + pairwise interactions (Yin Lou et. al)$

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term f(x_{temperature}, x_{is_weekday})
- Solution 2: Model two conditional terms
 - $f(x_{temperature}|weekday)$
 - ► f(x_{temperature}| weekend)

- Solution 1: $GA^2M = GAM + pairwise interactions (Yin Lou et. al)$
- Solution 2: RAM = GAM at subregions

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term $f(x_{temperature}, x_{is_weekday})$ Explainable
- Solution 2: Model two conditional terms
 - $f(x_{temperature}|weekday)$ Explainable
 - $f(x_{temperature}|weekend)$ Explainable

- Solution 1: $GA^2M = GAM + pairwise interactions (Yin Lou et. al)$
- Solution 2: *RAM* = GAM at subregions

$RA^{(2)}Ms$ go even beyond

GA²Ms Limitations:

GA²Ms Limitations:

• Have you ever ridden a bike in a cold day with humidity?

GA²Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!

GA²Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it workday? and bike is the only transport?

GA²Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it workday? and bike is the only transport?
- model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$?

GA²Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it workday? and bike is the only transport?
- model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$? Not explainable

GA²Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it workday? and bike is the only transport?
- model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$? Not explainable

$RA^{(2)}Ms$ solve that:

• $f(x_{\texttt{temperature}}, x_{\texttt{humidity}} | x_{\texttt{is_weekday}}) \rightarrow RA^2M$

GA²Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it workday? and bike is the only transport?
- model f(x_{temperature}, x_{humidity}, x_{is_weekday})? Not explainable

- $f(x_{\texttt{temperature}}, x_{\texttt{humidity}} | x_{\texttt{is_weekday}}) \rightarrow RA^2M$
- $f(x_{\texttt{temperature}}|x_{\texttt{humidity}} = \{\textit{high}, \textit{low}\}, x_{\texttt{is_weekday}}) \rightarrow \mathsf{RAM}$ with two conditions

GA²Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it workday? and bike is the only transport?
- model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$? Not explainable

- $f(x_{\text{temperature}}, x_{\text{humidity}} | x_{\text{is_weekday}}) \rightarrow RA^2M$ Explainable
- $f(x_{\texttt{temperature}}|x_{\texttt{humidity}} = \{high, low\}, x_{\texttt{is_weekday}}) \rightarrow \mathsf{RAM}$ with two conditions Explainable

RAM on toy example

$$f(\mathbf{x}) = 8x_2 \mathbb{1}_{x_1 > 0} \mathbb{1}_{x_3 = 0}$$

$$x_1, x_2 \sim \mathcal{U}(-1, 1), x_3 \sim Bernoulli(0, 1)$$

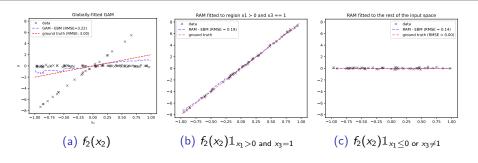


Figure: (Left) GAM, (Middle and Right) RAM

3-step approach:

11 / 18

3-step approach:

- Fit a black-box model to learn complex feature interactions
 - ▶ it should be differentiable
 - neural network is a good option

3-step approach:

- Fit a black-box model to learn complex feature interactions
 - it should be differentiable
 - neural network is a good option
- Use a Regional Effect method to isolate the important interactions
 - ► RHALE Gkolemis et. al.
 - ► Feature Interactions Herbinger et. al
 - ▶ finds which features $f(x_i)$ should be split into subregions $f(x_i|x_j \le \tau)$

3-step approach:

- Fit a black-box model to learn complex feature interactions
 - ▶ it should be differentiable
 - neural network is a good option
- Use a Regional Effect method to isolate the important interactions
 - ► RHALE Gkolemis et. al
 - ► Feature Interactions Herbinger et. al
 - finds which features $f(x_i)$ should be split into subregions $f(x_i|x_j \le \tau)$
- Fit a univariate function on each detected subregion
 - ▶ learn all $f(x_i|x_j \leq \tau)$

Step 1

- Fit a black-box model to capture all complex structures
 - it should be differentiable
 - A neural network is a good option

Step 2

- Regional Effect method to find important interactions
 - RHALE Gkolemis et. al
 - ► Feature Interactions Herbinger et. al
- Idea:
 - **F**eature effect is the average effect of each feature x_s on the output y
 - ▶ It is computed by averaging the instance-level effects
 - ► Heterogeneity \mathcal{H} (or uncertainty) measures the deviation of the instance-level effects from the average effect
 - we want to split the dataset in subgroups in order to minimize the heterogeneity
- In mathematical terms:

$$\underbrace{\mathcal{H}(f_i(x_i))}_{\mathcal{H} \text{ before split}} >> \underbrace{\mathcal{H}(f_i(x_i|x_j > \tau)) + \mathcal{H}(f_i(x_i|x_j \leq \tau))}_{\text{sum of } \mathcal{H} \text{ after split}}$$

Step 3

- Step 2 defines a new feature space $\mathcal{X}^{\mathtt{RAM}}$
- ullet Every feature is split to T_s subregions which are defined by \mathcal{R}_{st} :

$$\mathcal{X}^{\text{RAM}} = \{x_{st} | s \in \{1, \dots, D\}, t \in \{1, \dots, T_s\}\}$$

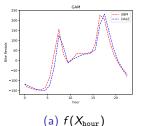
$$x_{st} = \begin{cases} x_s, & \text{if } \mathbf{x}_{/s} \in \mathcal{R}_{st} \\ 0, & \text{otherwise} \end{cases}$$
(1)

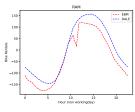
Fit a univariate function on each subregion:

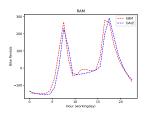
$$f^{\text{RAM}}(\mathbf{x}) = c + \sum_{s,t} f_{st}(x_{st}) \quad \mathbf{x} \in \mathcal{X}^{\text{RAM}}$$
 (2)

Bike Sharing dataset

Predict bike-rentals per hour







$$f(X_{\text{hour}})$$
 (b) $f(X_{\text{hour}}) \mathbb{1}_{X_{\text{workingday}} \neq 1}$

(c) $f(X_{\text{hour}}) \mathbb{1}_{X_{\text{workingday}}=1}$

Experimental Results

Tested on Bike Sharing and California Housing Datasets.

	Black-box	x-by-design			
	all orders	1 st order		2 nd order	
	DNN	GAM	RAM	GA^2M	RA ² M
Bike (MAE)	0.254	0.549	0.430	0.298	0.278
Bike (RMSE)	0.389	0.734	0.563	0.438	0.412
Housing (MAE)	0.373	0.600	0.553	0.554	0.533
Housing (RMSE)	0.533	0.819	0.754	0.774	0.739

What is next?

- Results are preliminary
 - ▶ Compare RAM vs GAM and RA^2M vs GA^2M in more datasets
 - Check robustness on edge cases:
 - ★ highly correlated features
 - ★ limited training examples
- Can we model uncertainty?
 - Uncertain because we do not model higher-order interactions
 - ▶ Uncertain about the conditionals, i.e., detected subregions
 - Uncertain about the univariate functions we learn
- Could we make it a 1-step process?
 - a network that automatically learns both the univariate functions and the conditions

Thank you for your attention

- For more discussion or future ideas on RAM, please, contact me:
 - vgkolemis@athenarc.gr
 - ► gkolemis@hua.gr
- More info about the paper: https://arxiv.org/abs/2309.12215

• Questions?