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What is it?

▪Music genre classification is crucial for recommendations and content organization

▪Common way to describe musical content, also for unknown pieces

▪Multiple possible taxonomies, based on the taxonomy of training data

▪Quite practical, even while subjective and imperfect
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What is it?

▪Music genre classification is crucial for recommendations and content organization

▪Common way to describe musical content, also for unknown pieces

▪Multiple possible taxonomies, based on the taxonomy of training data

▪Quite practical, even while subjective and imperfect

▪Uncertainty of the classifier
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Why is it interesting?

▪ Why?

▪ Deep learning models do not provide 100% accuracy

▪ Dealing with uncertainty is a key aspect in real-world applications

▪ Humans have a natural cognitive intuition for probabilities

▪ Reliable probability estimates can be used to incorporate neural networks into other 

probabilistic models

▪ How does it work now?

▪ Ideally: confidence measures as estimations of the probability of correct classification

▪ Usually: the estimated posterior class probabilities serve as confidence measures
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Neural networks are typically overconfident 

▪ Why not using softmax output?

▪ Highest softmax output significantly larger than the 

probability of the corresponding class [Guo2017]

▪ Deterministic overconfidence is large when

▪ data is far away from the decision boundary, out of distribution

▪ rectified linear units (ReLU) are used [Hein2019]

▪ Methods to overcome the overconfidence

▪ Calibrating softmax probabilities, post-hoc, with temperature scaling [Guo2017]

▪ useful when data can be considered in distribution

▪ Approximating Bayesian inference by MC dropout, Activating dropout during inference [Gal2016]

▪ Approximating Bayesian inference with deep ensembles [Lakshminarayanan2017]

▪ useful when data is out of distribution [Ovadia2019]

© Fraunhofer IDMT

[Guo2017]



Public information

Automatic Music Classification

9/23/2023page 6

Dataset and neural architectures

▪ FMA Dataset For Music Genre Classification: https://github.com/mdeff/fma

▪ Large-scale dataset for evaluating several tasks in Music Information Retrieval

▪ Small balanced subset: 8,000 30s clips with 1,000 clips per one of 8 root genres

▪ Hip-Hop, Electronic, Experimental, Instrumental, Pop, Folk, Rock, International

▪ Two neural architectures: ResNet and OpenL3+MLP

▪ ResNet with 420k parameters [Grollmisch 2021]

▪ Shallow Multi-Layer Perceptron (MLP) atop pre-trained OpenL3 embeddings [Cramer 2019]

▪ Evaluation of calibration quality based on reliability diagrams

▪ Mean Absolute Error

▪ Expected Calibration Error
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Compute the mean absolute error between the reliability curves and the expected accuracy values

▪ For validation data

▪ For test data
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Mean absolute error (MAE) values
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Dependency on temperature scaling (𝑇 ) for all datasets and models
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▪ For validation data

▪ For test data
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Take away message

▪ Music genre classification is crucial for recommendation systems and content organization

▪ Neural networks struggle to estimate class probabilities accurately

▪ Temperature scaling and deep ensembles improve output predictions

▪ Experiments on the Free Music Archive dataset demonstrate the effectiveness of temperature scaling with 

deep ensembles

▪ Various metrics are explored to find optimal calibration temperature

▪ Discrepancy in optimal temperatures for validation and test data highlights importance of considering 

generalization capability and data distribution variations
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