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INTRODUCTION



CHALLENGES IN DRL MODEL-BASED EXPLANATION

∙ The use of DRL agents in critical environments, where safety is
highly prioritized, is hindered due to the limited transparency of
the models.

∙ Extracting the rationale of a DL model in a human-interpretable
way remain a challenging task.
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1The images are generated with a Stable Diffusion model
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CHALLENGES IN DRL MODEL-BASED EXPLANATION

The ability of doing human interpretable models would allow us to:

∙ Improve the trustworthiness of the model
∙ Prevent failures
∙ Improve performance
∙ Augment human collaboration and users experience
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PART-BASED REPRESENTATION IN RL

Extracting a part-based representation of DL models provides a
great potential to design inherently explainable models, providing
transparent mechanism to decision-making process.

∙ Canceling neurons are eliminated.
∙ Their representation is based on simple addition of latent
causes acquired from feature representation.

∙ Hierarchical representation of data, where higher-level parts
are composed of lower-level parts.

∙ Part-based representations align more closely with human
intuition.

∙ Better visualizations allowing model interpretation.
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PART-BASED REPRESENTATION IN HUMANS

Part-based learning is conceptually tied to human cognition2

Figure: Representation of complex object images and simplification of them
in area TE (Source 2)

2Tsunoda, K., Yamane, Y., Nishizaki, M. et al. Complex objects are represented in
macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci
4, 832–838 (2001) 6



CHALLENGES IN PART-BASED REPRESENTATION

Training part-based learning includes:

∙ Sign constraints to model’s parameters, leading to training
difficulties, such as instabilities and convergence issues

∙ Different initialization and optimization schemes.
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CHALLENGES IN PART-BASED REPRESENTATION

Training part-based learning includes:

∙ Sign constraints to model’s parameters, leading to training
difficulties, such as instabilities and convergence issues

∙ Different initialization and optimization schemes.

Existing approaches for part-based learning are limited:

∙ Applied solely on autoencoders, and models that are not
usually used in DRL.

∙ Resulting in a significant performance degradation.
∙ Making them unsuitable for RL.
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PROPOSED METHOD



CONTRIBUTIONS

We propose a training approach for actor models in RL approaches,
allowing for extracting part-based representations that can provide
increased interpretability.

The proposed method includes:

1. An exponential distribution-based positive-only initialization
scheme for actor model.

2. An alternative sign-preserving optimization method to
Stochastic Gradient Ascent (SGA), allows one to train the actor
model in a non-negative manner.

The proposed pipeline enables more efficient training of inherently
explainable models that are based on the non-negative part-based
representation of the actor.
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PROXIMAL POLICY OPTIMIZATION

PPO utilizes actor-critic networks, where the actor parameters are
denoted as θ and critic ones as θ̃. The PPO method trains the actor
based on the policy gradient approach, while the critic evaluates
the actions by computing the corresponding state/action values.

The objective function of the actor is defined as:

Lactor(st;θ, θ̃) = Et

[
min

(
rclipt (θ)At(θ̃), rclipt (θ)At(θ̃)

)]
∈ R, (1)

where At(θ̃) is the advantage and rclipt (θ) the clipped policy ratio
between policy parameterization.
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PROXIMAL POLICY OPTIMIZATION

To this end, the Temporal Difference (TD) residual for each time step
t is calculated as:

δt(θ̃) = Rt + γVπ
θ̃t
(st+1)− Vπ

θ̃t
(st) ∈ R, (2)

where Rt is the reward the agent receives at time step t, Vπ
θ̃t
(st) is the

value estimation predicted by the critic policy π for current state st
based on critic parameter θ̃t, γ is the discount factor and λ is the
smoothing parameter. In this work, we use γ = 0.99 and λ = 0.95.
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PROXIMAL POLICY OPTIMIZATION

Then, the advantage At is defined as:

At(θ̃) =
n−t∑
i=0

γiλiδt+i(θ̃) ∈ R, (3)

where n is the total number of steps within an episode and t is the
time step.

On the other hand, the critic network is typically trained to minimize
the temporal difference between the returns and it is formulated as:

Lcritic = Et[δt(θ̃)
2] ∈ R (4)
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PROXIMAL POLICY OPTIMIZATION
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PROPOSED INITIALIZATION OF THE ACTOR
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PROPOSED OPTIMIZATION OF THE ACTOR
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PROPOSED METHOD
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PART-BASED NEURON
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PART-BASED REPRESENTATION MODELS
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EXPERIMENTAL RESULTS



EXPERIMENTAL SETUP

∙ We experimentally evaluate the proposed method on Cartpole.
∙ Both actor and critic applied to 10-neuron linear layers,
employing ReLU2 in the hidden layer.

∙ Each episode runs for 195 steps.
∙ We report the average accumulated reward and action
probabilities of 5 training runs.
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BASELINES INITIALIZATIONS

We compare the proposed method with two baselines using two
different initialization schemes.

∙ Both schemes draw values from a Gaussian distribution
θ ∼ N (0, σk) actor parameters given a distribution

∙ Xavier/Glorot initialization scheme:
∙

σxavier =

√
2

n+m
∙ He/Kaiming Initialization scheme:

∙
σhe =

√
2
√

2
n+m

Where n and m are the fan-in and fan-out of the layer,
respectively.
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BASELINE OPTIMIZATIONS

The baselines optimizes the actor network app ling an existing in
bibliography sign-preserving optimization method3, named Clipping
Stochastic Gradient Ascent (CSGA).

θ = max

(
0, θold + η

∂Lactor
∂θold

)
.

3Chorowski, Jan, and Jacek M. Zurada. ”Learning understandable neural networks
with nonnegative weight constraints.” IEEE transactions on neural networks and
learning systems 26.1 (2014): 62-69.
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EXPERIMENTAL RESULTS - TRAINING
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Figure: On the left, the figure depicts the obtained reward during training
that is smoothed using a moving average filter with a window of 100. On the
right, the action probabilities for each method are depicted using the same
moving average setting.
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EXPERIMENTAL RESULTS - EVALUATION

Table: Average and variance of rewards both for training and evaluation
phase over 5 runs.

Method Training Evaluation
CSGA (Kaiming Init.) 62.83± 39.64 89± 98.59
CSGA (Xavier Init.) 53.67± 35.47 58.2± 78.4
Proposed 89.45± 1.04 140.4± 43.9
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EXPERIMENTAL RESULTS

Baselines evaluation indicates
that:

∙ They are highly unstable.
∙ Resulting in poor local
minimum.

∙ End up in significantly lower
results.
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EXPERIMENTAL RESULTS

Baselines evaluation indicates
that:

∙ They are highly unstable.
∙ Resulting in poor local
minimum.

∙ End up in significantly lower
results.

The proposed method suffi-
ciently demonstrates that:

∙ Builds robust model,
resulting in consistent
training.

∙ Achieving significantly
higher performance than
the baselines.

27



EXPERIMENTAL RESULTS

Baselines optimization:

θ = max

(
0, θold + η

∂Lactor
∂θold

)
.

∙ Clipping method zeros out
synapses when they try to
change sign.

∙ Reducing the learning
capacity of the model.

∙ Lead to vanishing gradient
phenomena.

∙ Results in bad local minima
or even halt the training
process
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EXPERIMENTAL RESULTS

Baselines optimization:

θ = max

(
0, θold + η

∂Lactor
∂θold

)
.

∙ Clipping method zeros out
synapses when they try to
change sign.

∙ Reducing the learning
capacity of the model.

∙ Lead to vanishing gradient
phenomena.

∙ Results in bad local minima
or even halt the training
process

The proposed optimization:

θ =

∣∣∣∣θold + η
∂Lactor
∂θold

∣∣∣∣
∙ Parameters remain
non-negative without
suppressing weights to zero.

∙ Allowing gradients to flow
through the network since
the absolute value operator
has a non-zero derivative.

∙ Provides a smooth training
process and consistent
results
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FORWARD INTERPRETATION
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FORWARD INTERPRETATION
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FORWARD INTERPRETATION
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FORWARD INTERPRETATION
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FORWARD INTERPRETATION
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BACKWARD INTERPRETATION
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CONCLUSION & FUTURE WORKS



CONCLUSIONS

1. The proposed approach enables the extraction of part-based
representations.

2. Part-based representation enhanced interpretability.
3. To achieve this objective, the proposed method employs a

non-negative initialization technique, followed by a modified
sign-preserving training method.

4. Enhancing training stability.

The proposed pipeline enables more efficient training of inherently
explainable models based on the non-negative part-based
representation of the actor.
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FUTURE WORKS

The promising results reported in this paper highlight several
interesting future research directions.

∙ The proposed method can also be extended to handle
value-based RL approaches, such as DQN.

∙ Part-based representation learning to the critic model could
also provide further insight into the training dynamics of the RL
process, potentially leading to more robust algorithms.

∙ Combining the proposed method with distillation approaches,
could potentially allow for better guidance of the optimization
process and learning more accurate policies.

38



ACKNOWLEDGMENTS

This work was supported by the European Union’s Horizon 2020
Research and Innovation Program (OpenDR) under Grant 871449.
This publication reflects the authors’ views only. The European
Commission is not responsible for any use that may be made of the
information it contains.

Project Site: https://opendr.eu

39

https://opendr.eu


Thank you!

Questions?
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