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INTRODUCTION

We introduce a novel approach for setting up scientific
experiments that are guided by Bayesian network and Markov
decision processes.
Data analytics is experimentation-driven and puts the users’
feedback at the centre of the process.
The goal of our work is to define a probabilistic model of data
analytics that helps the experimenter at each step of the
experiment design.



INTRODUCTION
Data analytics model

FIGURE: Outline of the baseline scenario.



MODEL DEFINITION
Bayesian network

CAUSAL DEPENDENCIES BETWEEN DATASETS, METHODS AND DEPLOYMENT

d1,d2, . . .db

Datasets D
m1,m2 . . .mc

Methods M
o1,o2, . . .od

Deployment O
P(mj |di) P(ok |dimj)

Set of possible methods corresponds to given intent and
satisfies the hard constraints for methods, while set of possible
deployment options satisfies the hard constraints for deployment.
Initial probabilities

pi = P(D = di) =
1
b
, 1 ≤ i ≤ b,

qj = P(M = mj |D = di) =
1
c
, 1 ≤ j ≤ c

rk = P(O = ok |D = di ,M = mj) =
1
d
, 1 ≤ k ≤ d .



MODEL DEFINITION
Markov decision processes

INTERNAL DEPENDENCIES BETWEEN DATASETS, BETWEEN METHODS AND BETWEEN

DEPLOYMENT OPTIONS
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Transition probability from state s at the step t to state s′ at the
step t + 1 made due to an action a

pa
s,s′ = P(St+1 = s′|St = s,At = a), s, s′ ∈ S,

MDP State space Action Initial
s1,s2, . . .sN pa

s,s′

Datasets d1,d2, . . .db Selection of a dataset 1
b

Methods m1,m2, . . .mc Selection of a method 1
c

Deployment o1,o2, . . .od Selection of a deployment 1
d



RE-EVALUATION OF THE PROBABILITIES
Bayesian network

Let U1,U2, . . . ,Uq denote users with the expertise scores
E1,E2, . . .Eq, respectively, where 0 ≤ El ≤ 1,1 ≤ l ≤ q.

p̂i =

1 +
q∑

l=1
El Il(D = di)

b +
q∑

l=1
El

,1 ≤ i ≤ b,

q̂j =

1 +
q∑

l=1
El Il(M = mj |D = di)

c +
q∑

l=1
El

,1 ≤ j ≤ c,1 ≤ i ≤ b

r̂k =

1 +
q∑

l=1
El Il(O = ok |D = di ,M = mj)

d +
q∑

l=1
El

,

1 ≤ k ≤ d ,1 ≤ i ≤ b,1 ≤ j ≤ c.



RE-EVALUATION OF THE PROBABILITIES
Markov decision process

The transition probability pa
si ,sj

, 1 ≤ i , j ≤ N is estimated from
data with

p̂a
si ,sj

=
ni,j

N∑
j=1

ni,j

,

where ni,j is the number of times transition from state si to state

sj is made and
N∑

j=1
ni,j total number of all transitions from si to N

states.



RANKING OF THE OPTIONS
Bayesian network

Probability associated with each path of the Bayesian network is
calculated as

P(O = ok |D = di ,M = mj)P(M = mj |D = di)P(D = di),

1 ≤ i ≤ b,1 ≤ j ≤ c,1 ≤ k ≤ d .

Paths are ranked by their probabilities and the path with the
highest probability is offered to a new user as the best choice.



RANKING OF THE OPTIONS
Markov decision process

Utility function is defined as

u(s) = Ra(s, s′) + γmax
a∈A

∑
s′∈S

P(s′|s,a)u(s′),

where Ra(s, s′) is the expected reward received after
transitioning from a state s to a state s′, P(s′|s,a)u(s′) are the
future discounted rewards and γ is a discount factor, 0 ≤ γ ≤ 1.
Utility function provides the ranking score for each state of
Markov decision process.



EXAMPLE

Example in the domain of stomatology The datasets are of the
same context with the following description:
1 the intent is described as the analysis of the effects of two factors,
2 the relevant variables’ specification as the hard constraints for

methods: one dependent continuous variable and two categorical
independent variables with repeated measures on one of them,

3 the geographical location (Frankfurt) as the hard constraint for
deployment.



EXAMPLE

There are
1 2 datasets {d1,d2},
2 4 mixed ANOVA methods (corresponding to the intent and

satisfying the constraints for methods) {m1,m2,m3,m4} which
represent parametric ANOVA method, non-parametric ANOVA
for trimmed means, non-parametric ANOVA bootstrap
t-method and non-parametric Brunner-Langer mixed ANOVA,
respectively, and

3 3 suitable deployment options (satisfying hard constraints for
deployment) {o1,o2,o3} which represent Google Cloud
Computing deployment options n2-standard-2, n2-standard-4
and n2-standard-16, respectively.

There is a total of 24 possible paths of Bayesian network.



EXAMPLE
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FIGURE: Initial Bayesian network



EXAMPLE
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FIGURE: Bayesian network model with re-evaluated probabilities



CONCLUDING REMARKS

Markov decision process gives the insight into user’s behaviour,
while Bayesian network provides the best path (dataset, method
and deployment option) for a given intent and hard constraints.
Information from the Markov decision process will be used in the
re-evaluation of the probabilities of Bayesian network.
Our probabilistic model enables us to incorporate the expert’s
knowledge and experience into data analytics.
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