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LINTRODUCTION

m We introduce a novel approach for setting up scientific
experiments that are guided by Bayesian network and Markov
decision processes.

m Data analytics is experimentation-driven and puts the users’
feedback at the centre of the process.

m The goal of our work is to define a probabilistic model of data
analytics that helps the experimenter at each step of the
experiment design.
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FIGURE: Outline of the baseline scenario.



LMODEL DEFINITION
L Bayesian network

CAUSAL DEPENDENCIES BETWEEN DATASETS, METHODS AND DEPLOYMENT

Datasets D Meth M Deployment O
P( ethods P(ox|dim;) ploy

mj|dj)
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m Set of possible methods corresponds to given intent and
satisfies the hard constraints for methods, while set of possible
deployment options satisfies the hard constraints for deployment.

m Initial probabilities

pi=P(D=d)= 5 1<i<b,
qj:P(M:mj\D:d,-)—%, 1<j<C
rk = P(O=0k|D=d,M=m;) = 17 1<k<d



LMODEL DEFINITION
L Markov decision processes

INTERNAL DEPENDENCIES BETWEEN DATASETS, BETWEEN METHODS AND BETWEEN
DEPLOYMENT OPTIONS

m Transition probability from state s at the step ¢ to state s’ at the
step t + 1 made due to an action a
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LRE-EVALUATION OF THE PROBABILITIES

L Bayesian network

m Let Uy, Uy, ..., Ug denote users with the expertise scores
Eq, Es, ... Eq, respectively, where 0 < £, < 1,1 </ <q.

q
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1<k<di<i<bi<j<ec.




LRE-EVALUATION OF THE PROBABILITIES

L Markov decision process

m The transition probability P?,-,s,-s 1 <i,j < Nis estimated from

data with n
~na _ /7/
pS,',S/' - N ’
> Nij
J=1

where n; ; is the number of times transition from state s; to state

N

sj is made and ) n;; total number of all transitions from s; to N
=1

states.



LRANKING OF THE OPTIONS

L Bayesian network

m Probability associated with each path of the Bayesian network is
calculated as

P(O:ok\D:d,-,M:m,-)P(M:mj\D:d,-)P(D:d,-),
1<i<h1<j<ci1<k<d.

m Paths are ranked by their probabilities and the path with the
highest probability is offered to a new user as the best choice.



LRANKING OF THE OPTIONS

L Markov decision process

m Utility function is defined as

u(s) = Ra(s, &') + v max ZE:S P(s'|s, a)u(s),
S/

where Rj(s, ') is the expected reward received after
transitioning from a state s to a state s', P(s'|s, a)u(s’) are the
future discounted rewards and + is a discount factor, 0 < v < 1.

m Utility function provides the ranking score for each state of
Markov decision process.



LEXAMPLE

m Example in the domain of stomatology The datasets are of the

same context with the following description:

H the intent is described as the analysis of the effects of two factors,

the relevant variables’ specification as the hard constraints for
methods: one dependent continuous variable and two categorical
independent variables with repeated measures on one of them,

the geographical location (Frankfurt) as the hard constraint for
deployment.



LEXAMPLE

m There are

2 datasets {di, db},

4 mixed ANOVA methods (corresponding to the intent and
satisfying the constraints for methods) {m;, m>, ms, ms} which
represent parametric ANOVA method, non-parametric ANOVA
for trimmed means, non-parametric ANOVA bootstrap
t-method and non-parametric Brunner-Langer mixed ANOVA,
respectively, and

3 suitable deployment options (satisfying hard constraints for
deployment) {0y, 02, 03} which represent Google Cloud
Computing deployment options n2-standard-2, n2-standard-4
and n2-standard-16, respectively.

m There is a total of 24 possible paths of Bayesian network.



LEXAMPLE
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FIGURE: Initial Bayesian network



LEXAMPLE
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FIGURE: Bayesian network model with re-evaluated probabilities



LCONCLUDING REMARKS

m Markov decision process gives the insight into user’s behaviour,
while Bayesian network provides the best path (dataset, method
and deployment option) for a given intent and hard constraints.

m Information from the Markov decision process will be used in the
re-evaluation of the probabilities of Bayesian network.

m Our probabilistic model enables us to incorporate the expert’s
knowledge and experience into data analytics.
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